
Proxy App Usecases at Sandia

Christian R. Trott 1, Simon Hammond 2, Carter Edwards 1

11426 Scalable Algorithms, Sandia National Laboratories

Proxy App Usecases at Sandia

Sandia National Laboratories is a multi-program laboratory managed and operated by

Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the

U.S. Department of Energy’s National Nuclear Security Administration under contract

DE-AC04-94AL85000.

SAND2015-XXXXX

Christian Trott

Christian Trott

Christian Trott
SAND 2015-7000PE

Proxy App Usecases at Sandia 2/24

Proxy Apps: Connecting the Pieces

Programming)
Models)

Run1mes)

Compilers)

Hardware)

Applica1ons)

Libraries)

Tools)

Frameworks)

ProxyApp)

Proxy App Usecases at Sandia 3/24

Phases of Proxy App Use

Evaluating Programming Models

I Starting 2011 use of proxy apps to experiment with on-node programming
models

I MiniFE: 20+ variants in 10+ programming models
(Serial,OpenMP,Cuda,OpenCL,Cilk,TBB,Kokkos,...)

I Use to inform development of Kokkos and perform comparisons with native
programming models

I Now: evaluation of inter node tasking models

Develop Transition Strategies

I Prototype algorithms for thread scalability

I Develop and demonstrate incremental approach to adopt new architectures

I Use of miniDrivers to accelerate porting of libraries

Vendor collaboration

I Mini-apps are ideal for early hardware evaluation (simulators and early silicon)

I Utilized in procurements for benchmarks

Proxy App Usecases at Sandia 4/24

Evaluating Programming Models

Ca. 2011:

I Becoming clear that medium term future will not allow MPI-only

I New programming models coming out seemingly every few months: Cuda,
OpenCL, OpenACC, TBB, Cilk, C++AMP ...

I Which ones are viable? How do they perform? How portable are they? How
hard to use?

I Not possible to evaluate in production codes: need miniApps to give space for
rapid experimentation

I Start of DOE CoDesign centers and related miniApp e↵orts: Mantevo,
ExMatEx, ExaCT, CESAR

Ca. 2014:

I Wide range of implementations are available, can run many miniApps on all
hardware platforms.

I Understanding of strengths and weaknesses of di↵erent approaches exists

I Knowledge has been used to design new programming models for C++ (Raja,
Kokkos)

I Using miniApps to validate new models (e.g. I. Karlin, et al. ”Lulesh

programming model and performance ports overview.” Lawrence Livermore
National Laboratory (LLNL), Livermore, CA, Tech. Rep (2012).)

Proxy App Usecases at Sandia 5/24

MiniFE - Evaluation of

I Focus on simple Krylov solver (CG)

I Think of it as Sandia’s Stream benchmark

I If this doesn’t work well no point in going further

I Probably most variants of any MiniApp (30+)

0
4
8

12
16
20
24

K20X IvyBridge SandyBridge XeonPhi B0 XeonPhi C0 IBM Power7+

MiniFE&CG)Solve&/me&for&200&itera/ons&on&200^3&mesh&

NVIDIA ELL NVIDIA CuSparse Kokkos OpenMP
MPI-Only OpenCL TBB Cilk+(1 Socket)

Ti
m
e&
(s
ec
on

ds
)&

Proxy App Usecases at Sandia 6/24

MiniMD - Prototyping a path forward for LAMMPS

I Direct connection to LAMMPS (same people, same code style, same algorithm)

I Challenging piece of code for compilers and architectures

I No single bottleneck, and sensitive to almost all performance characteristics of
an architecture

1 2 4 8 16 32
of Devices

0

5

10

15

20

25

Ti
m

e
in

 se
c

Manual copies
GPU-Direct

Figure 14: Time for 200 iterations of miniFE-Kokkos CG-
solve on the Shannon GPU testbed The problem size is weak
scaled, with 8M elements per device. The solid line represent
runs using the GPU-Direct capabilities of MVAPICH2-1.9,
while the dashed line shows results with manual deep copies
during the communication phase. For each data point the
best time out of 12 runs was used.

simple Lennard Jones system using the microcanon-
ical ensemble and (2) a EAM simulation using the
microcanonical ensemble. The miniMD code has
four main components: (a) the force class calculates
atoms’ interactions, (b) the neighbor class creates
the list of neighbors j for each atom i, (c) the comm
class handles communication, and (d) the integrate
class performs the time integration.

We compare miniMD-Kokkos, with OpenMP
back-end, to the miniMD-OpenMP variant. Since
there is no pure CUDA version of miniMD, no com-
parison is done on GPUs. For all tests the respec-
tive version 1.2 of miniMD has been used. The
miniMD performance test is for strong scaling with
2,048,000 atoms, in contrast to the miniFE weak
scaling test. This problem size falls into the range of
typical MD simulations between 105 and 107 atoms.
Details of the test problem configuration are given
in Table 3.

The code was run with a single MPI rank per de-
vice, with 32 and 224 threads on Xeon and Xeon Phi
respectively. MiniMD-OpenMP was compiled with
a chunk size of 64 for the static OpenMP schedul-
ing. Each test is run twelve times and the best eight
times are included in the results.

Total Time Consumed performance metric. Our
performance metric for strong scaling tests is the
total time consumed (or total time), which is the
wall-clock time of the test times the number of de-

vices used. This metric is similar to the commonly
used billing metric of CPU hours. The traditional
parallel e�ciency measure is the inverse of this to-
tal time metric normalized to some reference time
(e.g., time to run on a single device). We present
results in the total time consumed metric to allow
a direct comparison of performance across devices,
and a break down of performance among compo-
nents of miniMD.

The total time consumed for 1,000 simulation
steps on 1 to 32 devices is given in Figure 15.
The first observation from these results is that
strong scaling is much worse on Xeon Phi and Ke-
pler GPUs than on the Xeon CPUs. The Xeon
Phi result can be explained by the poor MPI
performance previously noted in Section 6.1. A
comparison between miniMD-Kokkos and miniMD-
OpenMP shows that Kokkos introduces minimal
runtime overhead versus using OpenMP directly.
While miniMD-Kokkos is about 10% slower than
miniMD-OpenMP on the Xeon Phi system; how-
ever, the reverse is true for the CPU runs.

1 2 4 8 16 32 64
of Devices

6

8

10

12

Ti
m

e
in

 se
c

Xeon - Kokkos
Xeon - OpenMP
Xeon Phi - Kokkos
Xeon Phi - OpenMP
Kepler - Kokkos
Kepler - Cuda

Figure 15: Total time consumed for running 1,000 simu-
lation steps of a 2,048,000 atom Lennard-Jones simulation
with miniMD variants on di�erent test-beds. Note that a
horizontal line indicates perfect strong scaling and an up-
ward trend indicates a loss in parallel e�ciency. The solid
lines represent runs using miniMD-Kokkos, while the dashed
lines show results with peer variants. For each data point the
average of the best 8 runs out of 12 was used.

Timings from the four miniMD computations
(force calculation, neighborlist construction, com-
munication, and time integration) are obtained to
gain additional insight into miniMD performance.
First, the increase in total time correlated with in-
creasing MPI ranks is almost entirely caused by the
communication routines. Second, on the Xeon Phi

13

Proxy App Usecases at Sandia 7/24

MiniMD - Prototyping a path forward for LAMMPS

I Most of MiniMD’s characteristics are perfectly reflected in LAMMPS

I But: Xeon Phi significantly di↵erent relative performance

I Reason are less gathers due to single atom type implementation of MiniMD

11/19/13 11

Proxy App Usecases at Sandia 8/24

Evaluating Programming Models 2

Renewed focus on task runtimes

I Dharma project at SNL California: evaluate di↵erent tasking
models including Legion, Uintah and Charm++

I LLNL summer students ported miniApps for tasking
frameworks

I LANL looking at Legion+Kokkos

I Interested in Resilience and Load-Balancing

Proxy App Usecases at Sandia 9/24

Develop Transition Methods

Time is running out

I Current DOE leadership class machines get replaced in 2016 and 2018

I New platforms use XeonPhi (Trinity @ LANL/SNL, NERSC8 @ NERSC, ... @
ANL) or GPUs (Summit @ ORNL, Sierra @ LLNL)

I Threading is required for good performance

I Need to start porting now: Decisions have to be made

I Sandia: MPI + OpenMP and Kokkos; medium term Kokkos to get to Coral
platforms

Guiding application teams

I Minimal threading experience in application teams

I Need to run education programs

I Need to develop guidelines for porting

I Incremental approaches necessary

Proxy App Usecases at Sandia 10/24

Porting Lulesh to Kokkos

I Part of a TriLab (LLNL,LANL,SNL) CoDesign Milestone

I Our take: demonstrate phases of adopting Kokkos aligned with machine lifecycle

I 5 Variants were written: Minimal CPU, Minimal GPU, Opt 1-3

I Demonstrate performance improvements related to necessary code changes

Developed Steps for Migrating Apps:

I Add Kokkos::parallel_for with capture by reference

I Mitigate write conflicts with atomics

I Capture by value

I Move data structures to use Kokkos allocations

I Introduce Multi-Dimensional Views with Layouts and Traits

I Use new algorithms where necessary

Proxy App Usecases at Sandia 11/24

Minimal-CPU

Initial introduction of Kokkos

I Support CPU like architectures only

I Replace loops with parallel_for and parallel_reduce

I Resolve write conflicts with atomic operations

I No change to data structures

I Not portable!

Adding parallel for (34x)

// r e p l a c e
f o r (I n d e x t i = 0 ; i < numElem ; ++i) {

. . .
}
// wi th
Kokkos : : p a r a l l e l f o r (numElem , [&] (con s t I n d e x t& i) {

. . .
}) ;

Proxy App Usecases at Sandia 12/24

Minimal-CPU

Using atomic add for scatter add (27x)

// r e p l a c e
f o r (I n d e x t l node = 0 ; l node < 8 ; ++lnode) {

I n d e x t gnode = elemToNode [l node] ;
domain . f x (gnode) += f x l o c a l [l node] ;
domain . f y (gnode) += f y l o c a l [l node] ;
domain . f z (gnode) += f z l o c a l [l node] ;

}
// wi th

f o r (I n d e x t l node = 0 ; l node < 8 ; ++lnode) {
I n d e x t gnode = elemToNode [l node] ;
Kokkos : : a tomic add (&domain . f x (gnode) , f x l o c a l [l node]) ;
Kokkos : : a tomic add (&domain . f y (gnode) , f y l o c a l [l node]) ;
Kokkos : : a tomic add (&domain . f z (gnode) , f z l o c a l [l node]) ;

}

Taking Error Checks out of Loops (8x)

// r e p l a c e
f o r (I n d e x t i = 0 ; i < numElem ; ++i) {

. . .
i f (domain . v (i) <= Rea l t (0 . 0))

MPI Abort (MPI COMM WORLD, VolumeError) ;
}
// wi th
i n t c h e c k e r r o r = 0 ;
Kokkos : : p a r a l l e l f o r (numElem , [&] (con s t I n d e x t& i) {

. . .
i f (domain . v (i) <= Rea l t (0 . 0)) {

c h e c k e r r o r = 1 ;
}) ;
i f (c h e c k e r r o r)

MPI Abort (MPI COMM WORLD, VolumeError) ;

Proxy App Usecases at Sandia 13/24

Minimal-GPU

Adding GPU Support

I Use capture by value

I Make member functions const

I Replace std::containers with other data structures and use Kokkos::malloc for
allocations

Classes need const members and function markup

// r e p l a c e
c l a s s Domain {

. . .
R e a l t &x (con s t I n d e x t i d x) { r e t u r n m x [i d x] ; }

};
// w i th
c l a s s Domain {

. . .
KOKKOS INLINE FUNCTION Rea l t &x (con s t I n d e x t i d x) con s t { r e t u r n m x [i d x] ; }

};

Replace std::vector with Kokkos::vector

// r e p l a c e
c l a s s Domain {

. . .
Kokkos : : s td<Rea l t> m x ;

};
// w i th
c l a s s Domain {

. . .
Kokkos : : v e c to r<Rea l t> m x ;

};

Proxy App Usecases at Sandia 14/24

Optimization Level 1

Avoid reallocation of temporary bu↵ers 28x

// r e p l a c e
R e a l t ⇤ f x e l em = A l l o c a t e<Rea l t>(numElem8) ;
R e a l t ⇤ f y e l em = A l l o c a t e<Rea l t>(numElem8) ;
R e a l t ⇤ f z e l em = A l l o c a t e<Rea l t>(numElem8) ;
. . .
R e l e a s e (& f z e l em) ;
Re l e a s e (& f y e l em) ;
Re l e a s e (& f x e l em) ;
// wi th
R e s i z eBu f f e r ((numElem8⇤ s i z e o f (R e a l t)+4096)⇤3);
R e a l t ⇤ f x e l em = Al l o ca t eF romBuf f e r<Rea l t>(numElem8) ;
R e a l t ⇤ f y e l em = Al l o ca t eF romBuf f e r<Rea l t>(numElem8) ;
R e a l t ⇤ f z e l em = Al l o ca t eF romBuf f e r<Rea l t>(numElem8) ;

Reduce register pressure by separating independent calculations

// r e p l a c e
. . .
xd1 [. .] = . . ;
yd1 [. .] = . . ;
. . .
Ca lcE lemFBHourg lassForce (xd1 , yd1 , zd1 , hourgam , c o e f f i c i e n t ,

hgfx , hgfy , hg f z) ;
// wi th
. . .
xd1 [. .] = . . ;
. . .
Ca lcE lemFBHourg lassForce (xd1 , hourgam , c o e f f i c i e n t , hg fx) ;
. . .
yd1 [. .] = . . ;
. . .
Ca lcE lemFBHourg lassForce (yd1 , hourgam , c o e f f i c i e n t , hg fy) ;
. . .

Proxy App Usecases at Sandia 15/24

Optimization Level 2
Start using Views with Traits and Layout

//add
Kokkos : : View<con s t R e a l t ⇤ , Kokkos : : MemoryTraits<Kokkos : : RandomAccess>> m c x ;
. . .
KOKKOS INLINE FUNCTION Rea l t c x (con s t I n d e x t i d x) con s t { r e t u r n m c x [i d x] ; }
// r e p l a c e
R e a l t hourmodx =

x8n [i 3] ⇤ G. gamma [i 1] [0] + x8n [i 3 + 1] ⇤ G. gamma [i 1] [1] +
x8n [i 3 + 2] ⇤ G. gamma [i 1] [2] + x8n [i 3 + 3] ⇤ G. gamma [i 1] [3] +
x8n [i 3 + 4] ⇤ G. gamma [i 1] [4] + x8n [i 3 + 5] ⇤ G. gamma [i 1] [5] +
x8n [i 3 + 6] ⇤ G. gamma [i 1] [6] + x8n [i 3 + 7] ⇤ G. gamma [i 1] [7] ;

// w i th
R e a l t hourmodx = 0 . 0 ;
f o r (i n t j = 0 ; j<8; j++)

hourmodx += x8n (i2 , j) ⇤ G. gamma [i 1] [j] ;

Utilize TeamPolicy where appropriate

// r e p l a c e
Kokkos : : p a r a l l e l f o r (” Ca lcFBHourg la s s B” , numNode , KOKKOS LAMBDA(cons t i n t gnode) {

Rea l t fx tmp = Rea l t (0 . 0) ;
f o r (I n d e x t i = 0 ; i < count ; ++i)

fx tmp += fx e l em [c o r n e r L i s t [i]] ;
domain . f x (gnode) += fx tmp ;

// wi th
Kokkos : : p a r a l l e l f o r (” Ca lcFBHourg la s s B” , Kokkos : : TeamPolicy<>((numNode+127)/128 , t eam s i z e , 2) ,

KOKKOS LAMBDA (cons t typename Kokkos : : TeamPolicy<>::member type& team) {
con s t I n d e x t gnode beg in = team . l e a g u e r a n k ()⇤128 ;
con s t I n d e x t gnode end = (gnode beg in + 128<numNode)? gnode beg in + 128 : numNode ;
Kokkos : : p a r a l l e l f o r (Kokkos : : TeamThreadRange (team , gnode beg in , gnode end) , [&] (con s t I n d e x t& gnode) {

r e du c e doub l e 3 f tmp ;
Kokkos : : p a r a l l e l r e d u c e (Kokkos : : ThreadVectorRange (team , count) , [&] (con s t I n d e x t& i , doub le3& tmp) {

tmp . x += f x e l em [c o r n e r L i s t [i]] ;
} , f tmp) ;
Kokkos : : s i n g l e (Kokkos : : PerThread (team) , [&] () { domain . f x (gnode) += f tmp . x ; }) ;

}) ;

Proxy App Usecases at Sandia 16/24

Optimization Level 3

Merge Kernels

I Reduces data transfers (temporary arrays are replaced with temporary scalars)

I Reduces scheduling overhead

// r e p l a c e
Kokkos : : p a r a l l e l f o r (”EvalEOSForElems AA” , numElemReg , KOKKOS LAMBDA(cons t i n t i) {

//do s t u f f AA
}) ;
Kokkos : : p a r a l l e l f o r (”EvalEOSForElems BB” , numElemReg , KOKKOS LAMBDA(cons t i n t i) {

//do s t u f f BB
}) ;

// wi th
Kokkos : : p a r a l l e l f o r (”EvalEOSForElems” , numElemReg , KOKKOS LAMBDA(cons t i n t i) {

//do s t u f f AA
//do s t u f f BB

}) ;

Proxy App Usecases at Sandia 17/24

Lulesh Porting: Measuring productivity

I Count sites of modification and number of lines changed

0"

200"

400"

600"

800"

1000"

Kokkos"
Minimal"
CPU"

Kokkos"
Minimal"
GPU"

Kokkos"
Op8mized"

v1"

Kokkos"
Op8mized"

v2"

Kokkos"
Op8mized"

v3"

OpenMP"
Op8mized"

OpenMP"
Original"

So
ur
ce
'C
od

e'
Li
ne

s'

Source'Code'Lines'Added/Removed'Compared'to'Serial''

Lines"Added" Lines"Removed"

Proxy App Usecases at Sandia 18/24

Lulesh Porting: Performance Overview

I Preliminary data, some of it (in particular on Power) with not yet great Software
stack

I Some of the testbeds show not yet understood significant performance variances

0"

5000"

10000"

15000"

20000"

Haswell"Single"
Socket"MPI"1"x"16"
Threads"(Problem"

90)"

Haswell"Single"
Socket"MPI"1"x"32"
(Problem"90)"

Knights"Corner"MPI"1"
x"224"(Problem"90)"

Sandy"Bridge"Single"
Socket"MPI"1"x"8"
(Problem"90)"

NVIDIA"K40"(Problem"
90)"

APM"XGene1"MPI"1"x"
8"Threads"(Problem"

90)"

POWER8SXL"Dual"
Socket"Node"MPI"8"x"
20"Threads"(Problem"

90/Rank)"

POWER8SXL"Single"
NUMA"Domain"MPI"

1"x"40"Threads"
(Problem"90)"

Fi
gu
re
'o
f'M

er
it'

LULESH'Benchmark'Figure'of'Merit'on'Mul9:Core,'Many:Core'and'GPU'Systems'(Problem'Size'90)'

Original"OpenMP" OpenMP"OpYmized" Kokkos"Minimal" Kokkos"OpYmized"v1" Kokkos"OpYmized"v2" Kokkos"OpYmized"v3"

Proxy App Usecases at Sandia 19/24

From MiniApp to MiniDriver

FENL: addressing Matrix assembly with Kokkos

I MiniFE++: focus on Matrix assembly

I Implement gather sum and scatter add algorithms for Matrix assembly

I Use Newton iterations to exercise it.

Expanding FENL into a miniDriver

I Utilize Trilinos Tpetra data structures

I Exercise Trilinos Solvers (including AMG)

I Allow for UQ data types

I Now: expand to use Sierra data structures for assembly, and Sierra solvers

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1E+03& 1E+04& 1E+05& 1E+06& 1E+07&

 M
at

ri
x

Fi
ll

: m
ic

ro
se

c/
no

de

Number of finite element nodes

Phi-60 GatherSum
Phi-60 ScatterAtomic
Phi-240 GatherSum
Phi-240 ScatterAtomic
Kepler GatherSum
Kepler ScatterAtomic

Proxy App Usecases at Sandia 20/24

MiniApps for Collaborations

Benefits of miniApps

I OpenSource as opposed to export controlled or even classified

I Faster turn around time: an intern can write a new version

I Often small enough to allow run in simulators.

I Little dependencies: can be exercised on new software stacks

Kokkos and the AMD Kalmar Compiler

I Collaboration to develop Kokkos backend for APUs

I Use MiniApps to drive development and test results

I 40 hours ago: got Lulesh-Minimal-GPU and Lulesh-Opt-1 working

I Identified several bugs in compiler as well as new requirements to enable higher
optimization levels

Proxy App Usecases at Sandia 21/24

NVIDIA UVM Evaluation

Evaluating pre-release versions to head of issues

I Tpetra is Trilinos 2nd generation distributed linear algebra interface

I Started to move to Kokkos in 2013

I Utilizes UVM for NVIDIA platforms to deal with complex data management
issues (by ignoring them)

I Performance issues identified as compared to MiniFE which didn’t use UVM -
but neither requires data transfer during CG-Solve

Time for CG-Solve vs number of nodes (Weak scaling problem)

5

6

7

8

9

10

11

1 2 4 8 16

Tpetra Cuda Tpetra Pthread Tpetra TPI

MiniFE-Cuda MiniFE-CuSparse MiniFE-Pthreads

MiniFE-MKL

Proxy App Usecases at Sandia 22/24

NVIDIA UVM Evaluation

Replicate issue in MiniFE

I To hard to eliminate use of UVM in Tpetra ¿ add UVM to MiniFE

I Replicate On-Node issue

I Investigate with Profiler

I Finding launch overhead unrelated to data transfer

I Send findings to NVIDIA

Profiler comparison of UVM and noUVM variant

Proxy App Usecases at Sandia 23/24

NVIDIA UVM Evaluation

Fix came with driver update

Proxy App Usecases at Sandia 24/24

Summary

I
Proxy Apps are an important tool of collaboration

I
More nimble than real apps

I
Allow for experimentation which is hard to do in production code

I
Develop strategies before starting to modify production codes

I
But: wider spectrum from skeleton apps to miniDrivers is needed to cover

di↵erent needs

ProxyApps are here to stay!

Proxy App Usecases at Sandia 24/24

Summary

I
Proxy Apps are an important tool of collaboration

I
More nimble than real apps

I
Allow for experimentation which is hard to do in production code

I
Develop strategies before starting to modify production codes

I
But: wider spectrum from skeleton apps to miniDrivers is needed to cover

di↵erent needs

ProxyApps are here to stay!

